Energy Efficient RF Communication System for Wireless Microsensors
نویسندگان
چکیده
Emerging distributed wireless microsensor networks will enable the reliable and fault tolerant monitoring of the environment. Microsensors are required to operate for years from a small energy source while maintaining a reliable communication link to the base station. In order to reduce the energy consumption of the sensor network, two aspects of the system design hierarchy are explored: design of the communication protocol and implementation of the RF transmitter. In the first part of the thesis, energy efficient communication protocols for a coordinated static sensor network are proposed. A detailed communication energy model, obtained from measurements, is introduced that incorporates the non-ideal behavior of the physical layer electronics. This includes the frequency errors and start-up energy costs of the radio, which dominate energy consumption for short packet, low duty cycle communication. Using this model, various communication protocols are proposed from an energy perspective, such as MAC protocols, bandwidth allocation methods and modulation schemes. In the second part of the thesis, design methodologies for an energy efficient transmitter are presented for a low power, fast start-up and high data rate radio. The transmitter is based on a E-A fractional-N synthesizer that exploits trade-offs between the analog and digital components to reduce the power consumption. The transmitter employs closed loop direct VCO modulation for high data rate FSK modulation and a variable loop bandwidth technique to achieve fast start-up time. A prototype transmitter that demonstrates these techniques is implemented using 0.25pm CMOS. The test chip achieves 20ps start-up time with an effective data rate of 2.5Mbps while consuming 22mW. Thesis Supervisor: Anantha Chandrakasan Title: Associate Professor of Electrical Engineering
منابع مشابه
Energy-Efficient Link Layer for Wireless Microsensor Networks
Wireless microsensors are being used to form large, dense networks for the purposes of long-term environmental sensing and data collection. Unfortunately, these networks are typically deployed in remote environments where energy sources are limited. Thus, designing fault-tolerant wireless microsensor networks with long system lifetimes can be challenging. By applying energy-efficient techniques...
متن کاملDesign of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems
Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...
متن کاملEnergy efficient protocols for low duty cycle wireless microsensor networks
Emerging distributed wireless microsensor networks will enable the reliable and fault tolerant monitoring of the environment. Such microsensors are required to operate for years from a small energy source, while maintaining reliable communication link to the basestation. The design of energy-aware communication protocols can have a dramatic impact on the network lifetime for such applications. ...
متن کاملGame Theory based Energy Efficient Hybrid MAC Protocol for Lifetime Enhancement of Wireless Sensor Network
Wireless Sensor Networks (WSNs) comprising of tiny, power-constrained nodes are getting very popular due to their potential uses in wide applications like monitoring of environmental conditions, various military and civilian applications. The critical issue in the node is energy consumption since it is operated using battery, therefore its lifetime should be maximized for effective utilization ...
متن کاملToward an energy efficient PKC-based key management system for wireless sensor networks
Due to wireless nature and hostile environment, providing of security is a critical and vital task in wireless sensor networks (WSNs). It is known that key management is an integral part of a secure network. Unfortunately, in most of the previous methods, security is compromised in favor of reducing energy consumption. Consequently, they lack perfect resilience and are not fit for applications ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002